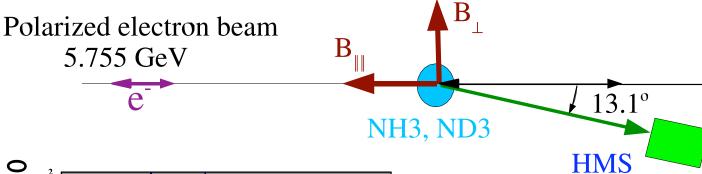
Resonance Spin Structure

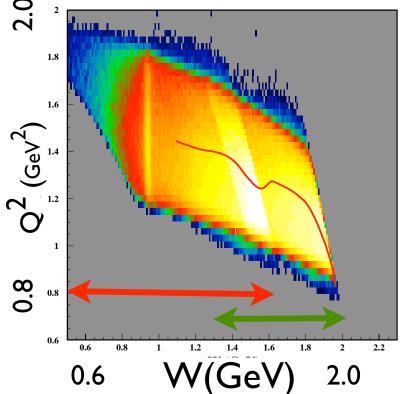
Shigeyuki Tajima (UVa)

Jefferson Lab RSS Collaboration

U. Basel, Florida International U., Hampton U., U. Massachusetts, U. Maryland, Mississippi S. U., North Carolina A&T U., U. of N. C. at Wilmington, Norfolk S. U., Old Dominion U., S.U. New Orleans, U. of Tel-Aviv, TJNAF, U. of Virginia, Virginia P. I. & S.U., Yerevan Physics I.

Spokespersons: Oscar Rondon(UVa), Mark Jones(JLab)

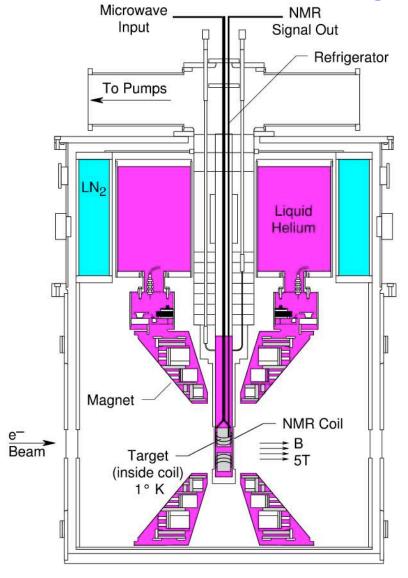

Analysis: Paul Mckee, Karl Slifer, S. Tajima, Frank Wesselmann, Hongguo Zhu, (Peter Bosted, Eric Christy)


Hall C January Meeting on Jan.25, 2007

The physics goals

- Measure proton and deuteron spin asymmetries $A_1(W, Q^2)$ and $A_2(W, Q^2)$ in the nucleon resonance region (1.1<W<1.9 GeV) at four-momentum transfer squared $Q^2 \sim 1.3 \text{ (GeV/c)}^2$. => Study W dependence.
- Extract polarized structure functions g₁ and g₂ and study:
 - i. Polarized local duality
 - ii. Twist-3 effects from moments of g1 and g2
- Extract Neutron spin structure functions from the proton and deuteron data.
- Calculate GDH Sum rules, Quark polarizations

RSS Experiment in Hall C at JLab



- High Momentum Spectrometer (HMS) detects scattered electrons.
 Momentum settings: 4.7, 4.1 GeV/c
- $\langle Q^2 \rangle = 1.3 \text{ GeV}^2$, 0.8 $\langle W \rangle \langle 2.0 \text{ GeV} \rangle$. W: Elastic+Resonance regions.
- I ~ 100nA for NH₃ and ND₃
- Beam Polarization (P_B) by Moller:

$$P_B = 65.5 \pm 2.6$$
 (%) for $B_{||}$

- $P_B = 70.9 \pm 1.7$ (%) for B_{\perp}
- Beam charge asym. < 0.1%

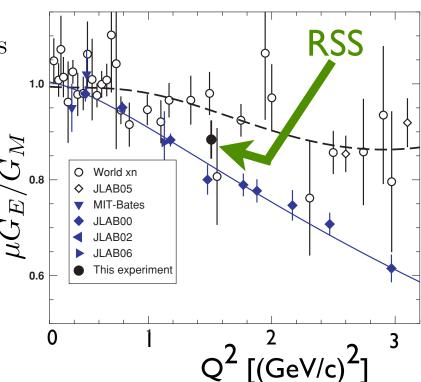
Polarized Targets (15NH₃ and 15ND₃)

- Dynamic Nuclear polarization driven by microwave
- ⁴He evaporation refrigerator
- •5T polarizing field on target.
- •NMR system for polarization measurement
- Polarization can be flipped by 180°. Ran ± for equal times
- Average target polarization
 P_T =68 % (NH₃); 18 % (ND₃)
- •Relative systematic error ~2.9%

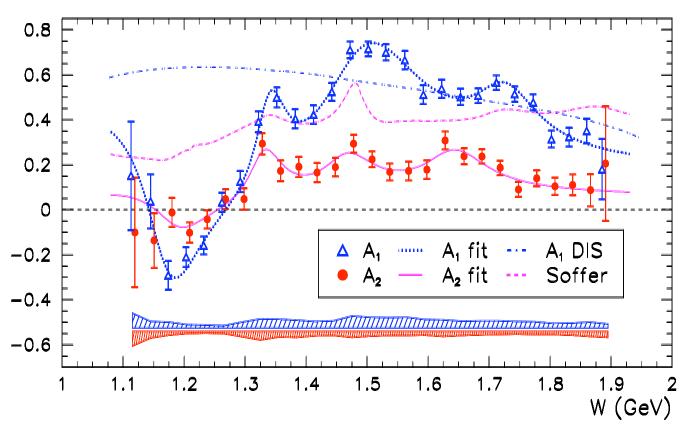
Proton Elastic Asymmetry

$$A_{el} = \frac{K_1 \cos \theta^* + K_2 \frac{G_E}{G_M} \sin \theta^* \cos \phi^*}{G_E^2 / G_M^2 + \tau / \epsilon}$$

 $\theta^*, \phi^* = \text{polar} \text{ and azimuthal angles}$ between \vec{q} and target spin

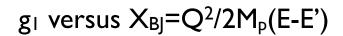

 $K_1, K_2 = \text{kinematic factors}$

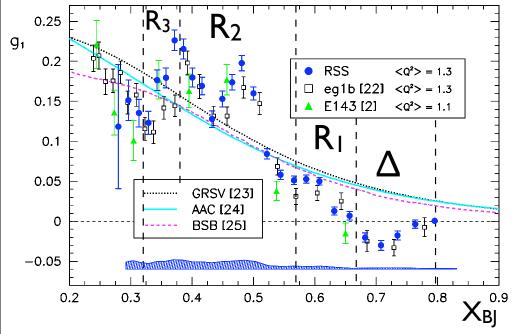
Sensitivity		Т
$\Delta A_{el}/A_{el}$	0.00	~1.0
$\overline{\Delta rac{G_E}{G_M}/rac{G_E}{G_M}}$	0.02	


• The product $P_B \cdot P_T$ extracted from A_{\parallel}

• Ratio of the Proton EM Form Factors, G_E/G_M at $Q^2=1.5(G_eV/c)^2$, measured from A_\perp (results published)

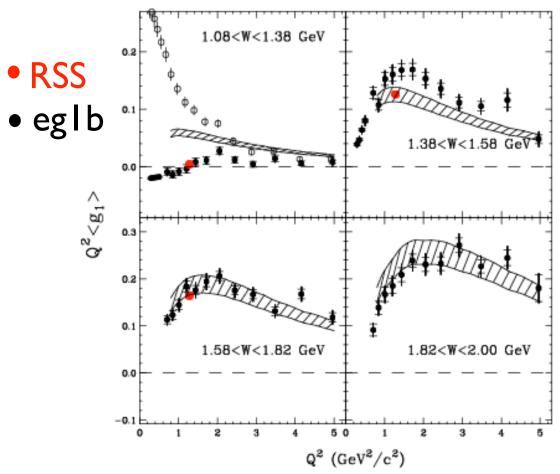
M.K. Jones et al Phys. Rev. C 74, 035201 (2006)




Proton A₁ and A₂ versus W

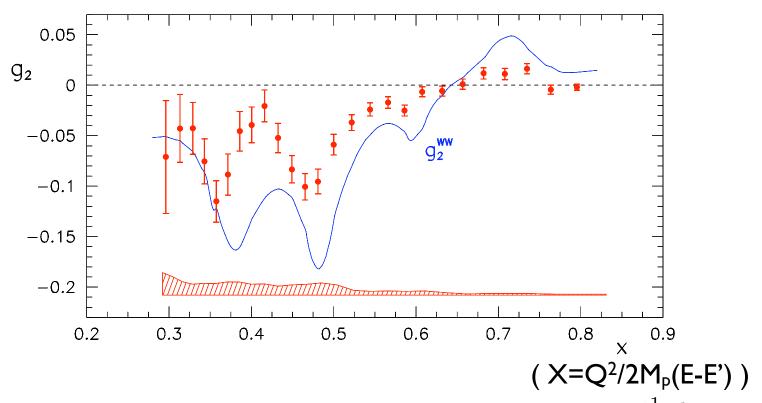
• A₁ and A₂ are extracted from A_{||} and A_{\perp} using Hall C R fit by M.E. Christy

Proton g₁ and Study of Polarized Duality



NLO PDFs (BSB, GRSV, AAC) have been evolved to $Q^2 = 1.3 \text{ GeV}^2$, and have target mass corrections.

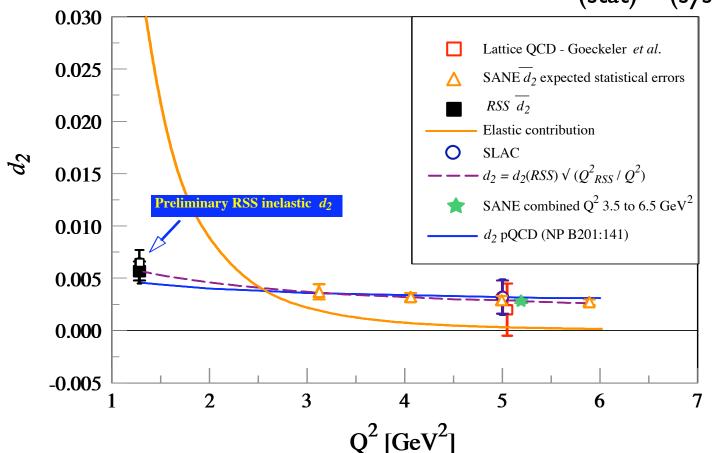
	W range	Ratio of Integrals (PDF and data fit)	
Delta	1.111.30	3.93 ± 0.56	
RI	1.301.39	1.38 ± 0.10	
R2	1.391.68	0.78 ± 0.05	
R3	1.681.79	0.81 ± 0.06	
Global	1.091.91	1.17 ± 0.08	
M-RI	0.941.40	0.42 ± 0.06	
R2 +	1.401.91	0.87 ± 0.06	


- Quoted errors are for the data only. Phenomenology systematics for the PDFs (±0.06 for the global ratio) needs to be added.
- Local duality is not observed in proton g_1 at $Q^2 = 1.3$ GeV²
- The global ratio becomes worse (1.42 ±0.10) if large-x resummations for the PDFs (Bianchi et al, PRD 69, 014505 (2004)) are included.

Comparison of RSS proton g₁ to eg1b results

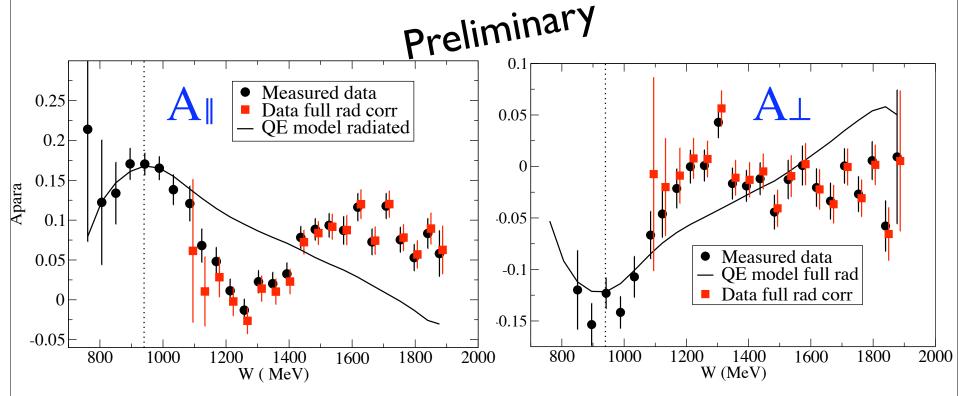
- Q^2 dependence of $Q^2 < gI >$ for each W region indicated is shown above. (Taken from Fig.3 of hep-ph/0607283 (P. Bosted et al) and RSS data added)
- Hatched bands show the average ranges calculated from extrapolated NLO DIS fits

Proton g₂ and Higher Twist

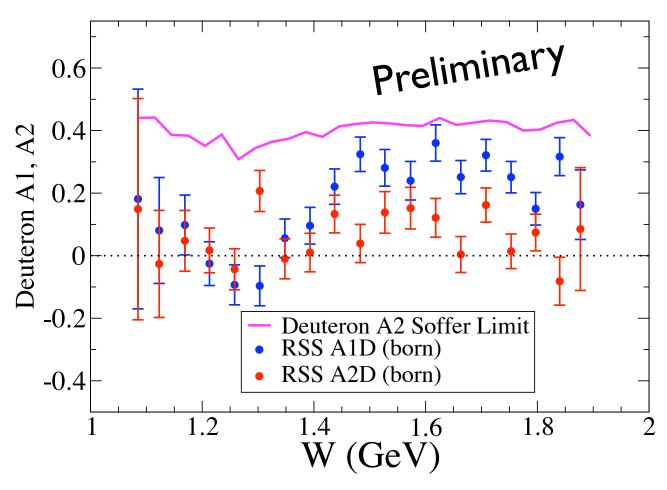


$$g_2 = g_2^{WW} + \bar{g}_2$$
; Twist $2: g_2^{WW}(x, Q^2) = -g_1(x, Q^2) + \int_x^1 \frac{dy}{y} g_1(y, Q^2)$

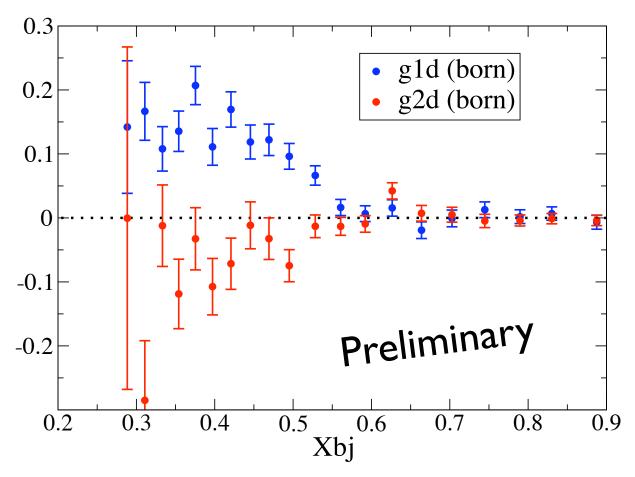
• Use measured g_1 to calculate g_2^{WW}


Twist-3 Matrix Element d₂

$$d_2 = \int_0^1 x^2 (2g_1 + 3g_2) dx = 3 \int_0^1 x^2 (g_2 - g_2^{WW}) dx$$
[RSS] $\overline{d_2} = \int_{0.29}^{0.84} x^2 (2g_1 + 3g_2) dx = 0.0057 \pm 0.0009 \pm 0.0007$
(stat) (syst)


- •The measured d₂ (RSS) is more than 5 sigmas above zero
- pQCD evolution courtesy of A. Deur

Deuteron A_∥ and A_⊥ versus W


- Arenhövel calculated the deuteron QE cross sections, $A \parallel$ and $A \perp$ at RSS kinematics. Dipole form factor with Gen=0 was used.
- Arenhövel's QE asym models agree with data in the QE region
- Radiative corrections have been applied to our data.

Deuteron A₁ and A₂ versus W

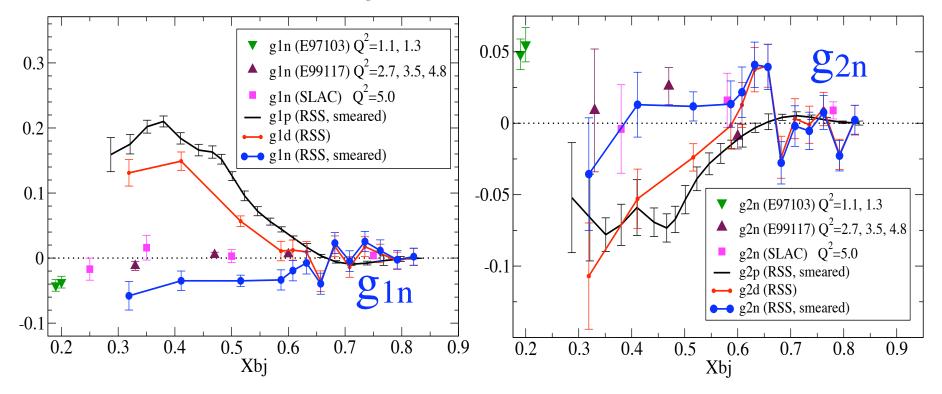
Radiative corrections have been applied.

Deuteron g₁ and g₂ versus x

- Radiative corrections have been applied.
- P. Bosted's deuteron fits were used to obtain F_{1d}, F_{2d}

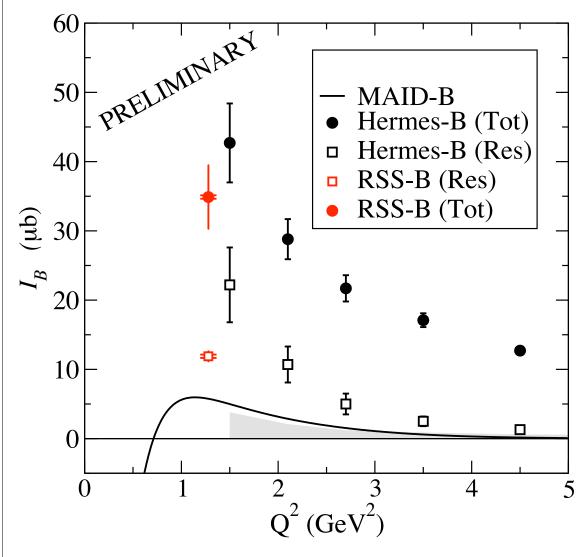
Extraction of Neutron Spin Structure

- Extraction of neutron spin structure functions (SSFs) from the RSS proton and deuteron data
- Smeared proton SSFs need to be subtracted from the deuteron SSFs.
- We employ Bodek-Ritchie version of Atwood-West smearing technique: Form the convolution of the momentum distribution and on-shell quantities e^{∞}


 $F(Q^2, \nu) = \int_0^\infty |f(\vec{p})|^2 g(Q^2, W', \nu') d\vec{p}$

• Need to obtain smeared proton g_1 and g_2

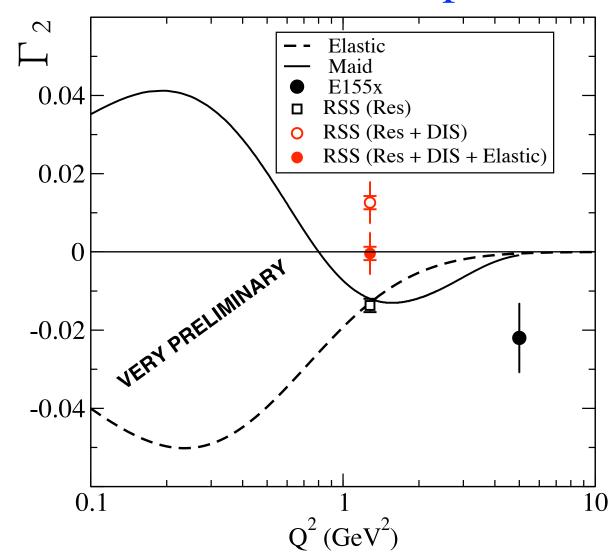
$$g_1^p \xrightarrow{\Delta\sigma_{\parallel}^p(g_1^p,g_2^p)} \xrightarrow{\mathsf{Smear}} \xrightarrow{\Delta\sigma_{\parallel}^{ps}} \xrightarrow{\Delta\sigma_{\parallel}^{ps}} \xrightarrow{g_1^{ps}} \xrightarrow{g_1^{ns} = g_1^d - g_1^{ps}} \xrightarrow{\Delta\sigma_{\perp}^{ps}} \xrightarrow{\Delta\sigma_{\perp}^p(g_1^p,g_2^p)} \xrightarrow{\mathsf{Smear}} \xrightarrow{\Delta\sigma_{\parallel}^{ps}} \xrightarrow{\Delta\sigma_{\perp}^{ps}} \xrightarrow{g_2^{ns} = g_2^d - g_2^{ps}}$$


Smeared Neutron g₁ and g₂ versus x

RSS: Preliminary

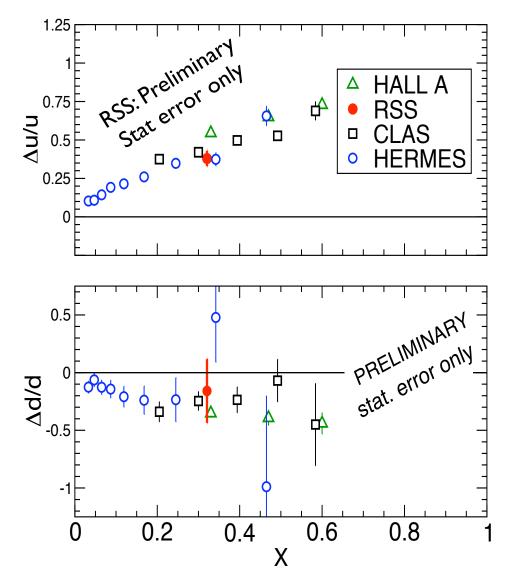
- Radiative corrections applied to RSS data.
- Previous measurements (JLab E97-103, E99-117, SLAC)
 were in the Deep Inelastic Scattering (DIS) region

GDH Sum rule from RSS proton data


$$I_{B} = \tilde{I} \int_{0}^{x_{th}} \frac{g_{1}(x) - \gamma^{2} g_{2}(x)}{\sqrt{1 + \gamma^{2}}} dx$$

where

$$\tilde{I} = \frac{16\pi^2\alpha}{Q^2}$$

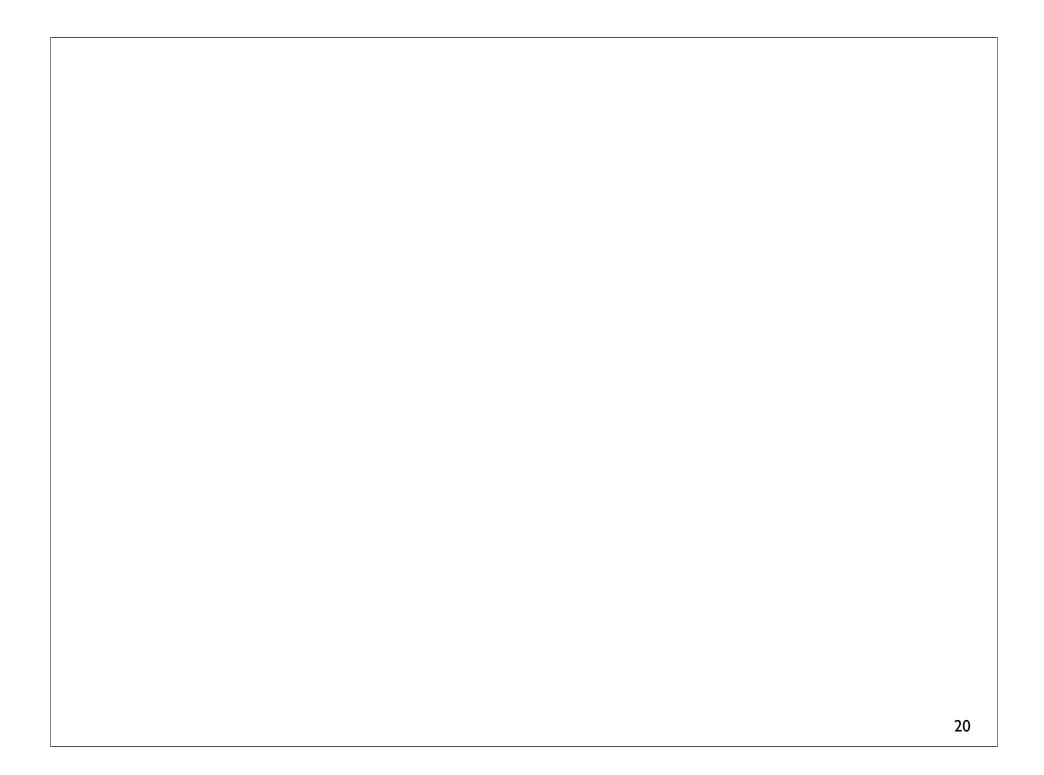

$$\gamma^2 = \frac{Q^2}{\nu^2} = \frac{4m^2x^2}{Q^2}$$

The Burkhardt-Cottingham Sum Rule from RSS proton data

$$\Gamma_2 = \int_0^1 g_2(x) dx$$

Quark Polarizations Δ u/u and Δ d/d

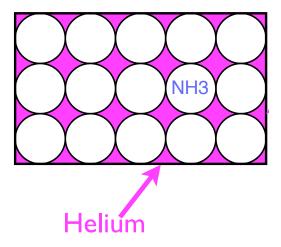
Phys. Lett. **B641**, 11 (2006) (K.V. Dharmawardane et al.) [CLAS]

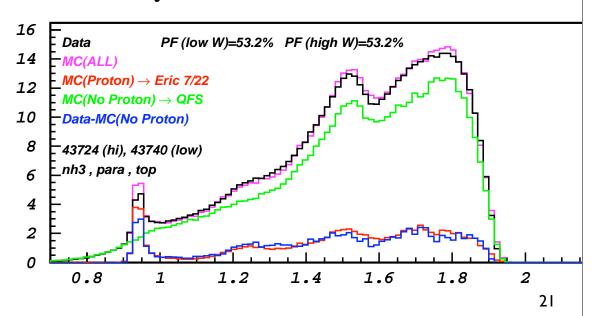

$$\frac{\Delta u}{u} \approx \frac{5g_1^p - 2g_1^d/(1 - 1.5w_D)}{5F_1^p - 2F_1^d};$$

$$\frac{\Delta d}{d} \approx \frac{8g_1^d/(1 - 1.5w_D) - 5g_1^p}{8F_1^d - 5F_1^p}.$$

- CLAS, RSS: used data for $W>1.77 \text{ GeV and } Q^2 \ge 1 \text{ GeV}^2$
- RSS data agrees with world data

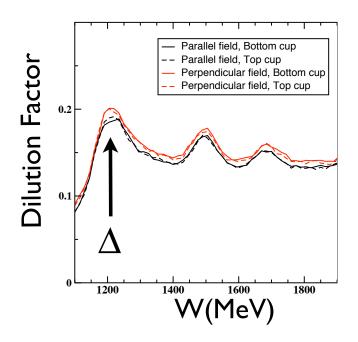
Summary


- Precise measurement of the proton and deuteron spin asymmetries A_1 , A_2 and spin structure functions g_1 , g_2 in the resonance region.
- Studied polarized duality in the resonance region,
 twist-3 effect, and extracted d₂ matrix element
- Deuteron, neutron and sum rule results are preliminary.
- Proton elastic paper has been published:
 M.K. Jones et al, PRC 74, 035201 (2006)
- Proton SSFs paper has been submitted to PRL
 F.R. Wesselmann et al. Preprint: nucl-ex/0608003
- New papers on proton and neutron sum rules (K.Slifer) and Deuteron/Neutron SSFs (S.Tajima) will be written.


Packing Fraction

Packing Fraction (PF) for the proton target is the ratio of NH₃ to (NH₃ +He).

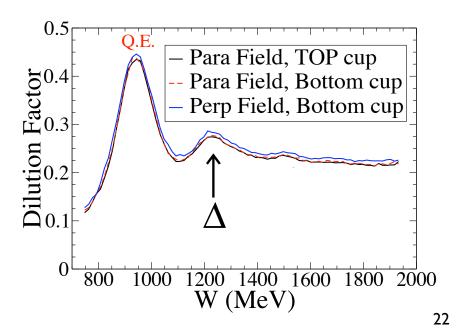
Similarly for the deuteron target (ND₃)


- PF for each target cell was determined by comparing the simulated W spectrum with data.
- Measured NH₃ PFs: 53-60%,
 Measured ND₃ PFs: 52-58%,
 Systematic error in PFs: <2%

Dilution Factor

Proton

- Dilution Factor: f(W) f(W) = Rate(proton) / Rate(total)
- Hall C fits for F₂ and R by M.E. Christy); QFS for A>2
- $f(w) \sim 0.1-0.2$ (resonance region)



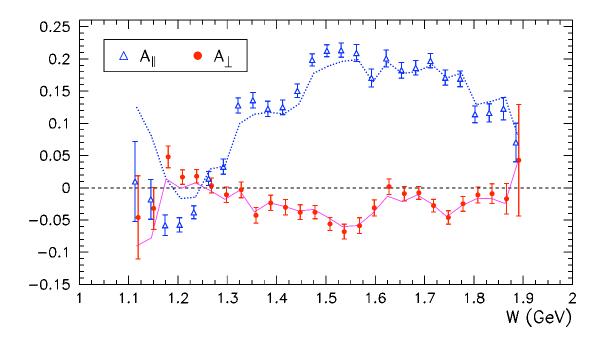
Deuteron

• Dilution Factor: f(W)

f(W) = Rate(deuteron) / Rate(total)

- Fit to the deuteron cross section obtained by I. Niculescu;
- QFS for A>2
- $f(w) \sim 0.2-0.3$ (resonance region)

Beam-Target asymmetries


$$A_{raw} = \frac{N^{\downarrow \uparrow} - N^{\uparrow \uparrow}}{N^{\downarrow \uparrow} + N^{\uparrow \uparrow}} \quad \text{or} \quad \frac{N^{\downarrow \Rightarrow} - N^{\uparrow \Rightarrow}}{N^{\downarrow \Rightarrow} + N^{\uparrow \Rightarrow}}$$

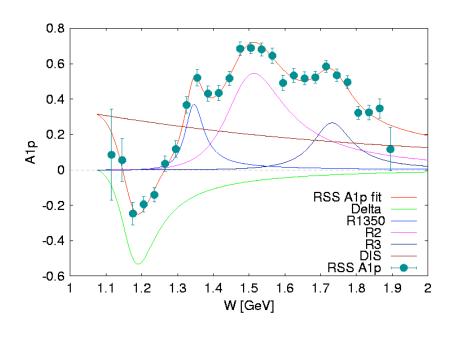
Target polarization: (longitudinal) (perpendicular)

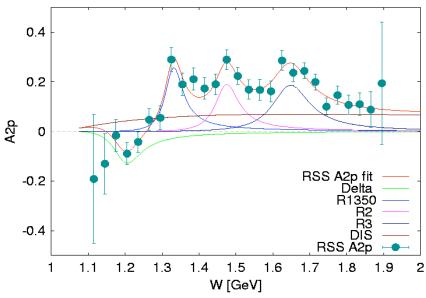
$$A_{\parallel,\perp} = \frac{1}{C_N f_{rc}} \cdot \frac{A_{raw}}{f P_B P_T} + A_{rc}$$

- Counts are normalized by the charge and deadtime
- $f = dilution factor; P_B, P_T = beam and target polarizations$
- $C_N =$ corrections for ^{15}N asymmetry
- f_{rc} , A_{rc} = radiative corrections. POLRAD (Akusevich et al.) modified to include a fit to our data.

Proton A_∥ and A_⊥ versus W

Points: Fully-corrected asymmetries
 Curves: Without radiative corrections

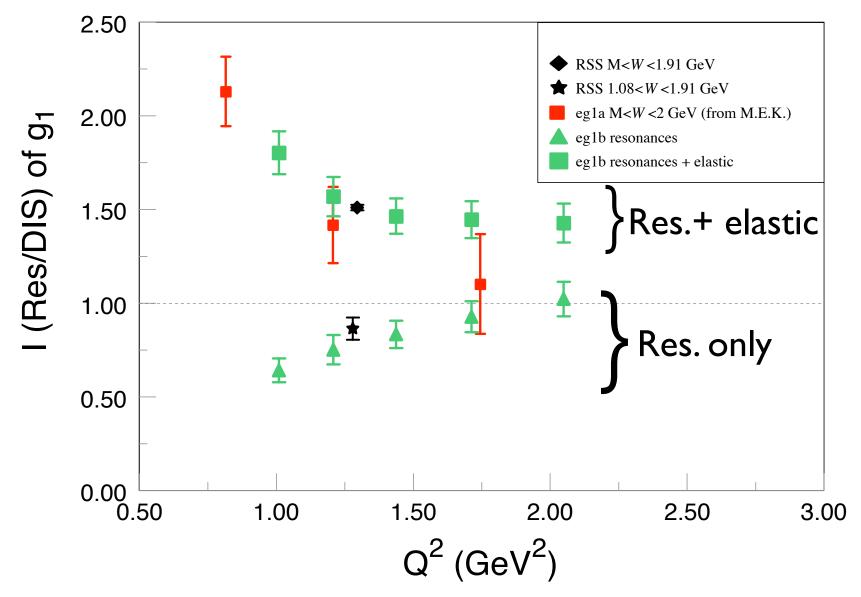

How to get Spin Asymmetries A₁ and A₂


$$A_{1} = \frac{1}{(E+E')D'} \left((E-E'\cos\theta)A_{||} - \frac{E'\sin\theta}{\cos\phi}A_{\perp} \right)$$

$$A_{2} = \frac{\sqrt{Q^{2}}}{2ED'} \left(A_{||} + \frac{E-E'\cos\theta}{E'\sin\theta\cos\phi}A_{\perp} \right)$$

- D'(E, E', θ ,R) are functions of kinematic variables and $R = \sigma_L/\sigma_T$
- A₁ and A₂ are extracted from the measured A_{||}, A_{\perp} and the fit of R (obtained from JLab data) by M.E. Christy
- Determination of A_1 and A_2 in a model independent way (RSS is the only experiment which measured both $A_{||}$ and A_{\perp} on protons and deuterons in the resonance region)

Fit to the Proton SA's

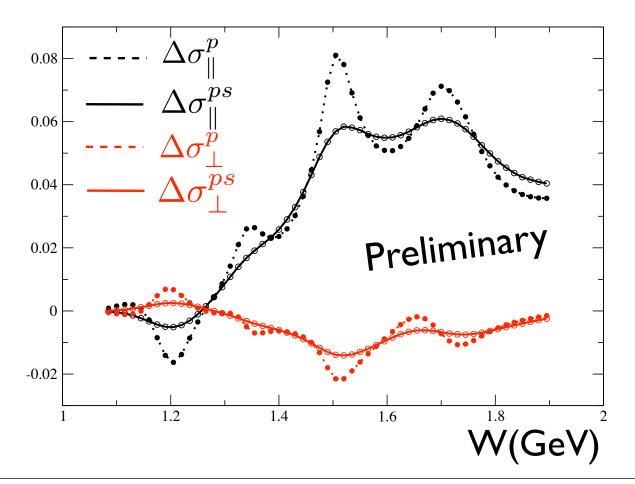

- Four Breit-Wigner resonance shapes plus DIS background
- Fit A₁ and A₂ independently
- Reduced $\chi^2 \sim 1.3 1.5$ for 12 d.o.f.

How to get spin structure functions g_1 and g_2

$$g_1 = rac{F_1}{1 + \gamma^2} (A_1 + \gamma A_2)$$
 $F_1 = F_2 (1 + \gamma^2)/2x/(1 + R)$ $g_2 = rac{F_1}{1 + \gamma^2} (A_2/\gamma - A_1)$ $\gamma = \sqrt{rac{Q^2}{
u^2}}$

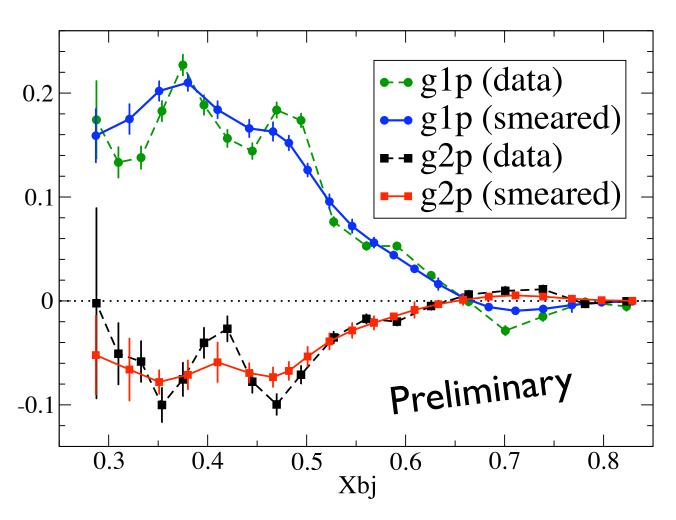
g₁ and g₂ are extracted from the measured
 A₁ and A₂ using the JLab F₂ and R fits by
 M.E. Christy (to be published)

Q² Dependence of Global Duality



Systematic Uncertainties

	Proton A	Proton A _⊥
Target Polarization	} 1.1%	2.9 %
Beam Polarization		1.3 %
Dilution Factor	4.9 %	4.9 %
Radiative Corrections	2.7 %	12.9 %
Kinematic Reconstruction	0.4 %	0.4%
Total	5.7%	14.2%


Effect of Smearing (I)

 Proton data fit and Paris W.F. for the deuteron were used to smear the proton cross sections.

Effect of Smearing (II)

• g_{1p} and g_{2p} before and after smearing

